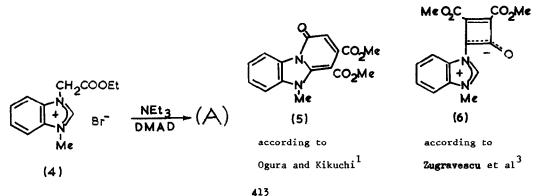

1,3-DIPOLAR CYCLOADDITION OF BENZIMIDAZOLIUM YLIDES WITH DIMETHYL ACETYLENE-DICARBOXYLATE

- A RE-INVESTIGATION

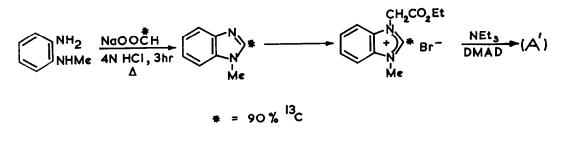

0. Meth-Cohn

Ramage Laboratories, University of Salford, Salford M5 4WT, England. (Received in UK 16 December 1974; accepted for publication 6 January 1975)

1-Methyl-3-phenacylbenzimidazolium bromide (1) yields the corresponding ylide (2) with a base (in situ) which reacts normally with dimethyl acetylenedicarboxylate (DMAD) to give the

pyrrolobenzimidazole (3). However the corresponding 1-methyl-3-(ethoxycarbonylmethyl) benzimidazolium bromide (4) under the same conditions gives rise to a stable cycloaddition product (A) m.p. 255-7° involving loss of a molecule of ethanol. Controversy over the structure of this product exists in that Japanese workers¹ favoured the pyridobenzimidazole structure (5) (on the grounds of appropriate u.v., m.s., n.m.r., i.r.² and analytical data) while a Roumanian group³ preferred the remarkable structure (6) (in particular since the 2deuterio derivative of (4) gave the cycloaddition product still bearing deuterium - this

evidence does not eliminate a concerted rearrangement of D however).

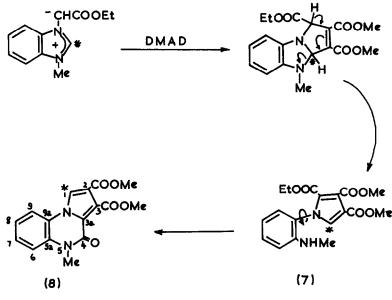

1 2

Since both structures are equivocal the product was further examined. The ¹³C n.m.r. spectrum (Table 1) immediately ruled out a benzimidazole-type structure in that no low-field

Me's (ppm)	Aromatics (ppm) (multiplicity in off-resonance spectrum)	CO's (ppm)
32.98, 54.48, 56.48	115.07(s) 116.98(d) 119.13(d) 120.48(s)	156.72, 165.22
	123.18(s) 123.81(s+d) 126.28(s) 129.42(d) 130.39(d)	169.76

Table	1.	The	C	n.m.r.	spectrum	of	compound	A	in	MeSO_H

absorption characteristic of the C-2 of a benzimidazole (e.g. benzimidazole-141.5 ppm; 1methylbenzimidazole-143.5 ppm; (4)-143.3 ppm) is observed. Furthermore when the 2-position of (4) was labelled with 13 C, prepared as shown in Scheme 1, the cycloaddition product (A[/]) contained a CH group labelled (123.79 ppm)[†] with long range coupling to the two ester CO

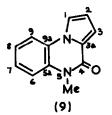


Scheme 1

resonances (2.6 and 4.8 Hz) and to one other quaternary carbon (120.48 ppm, 5.8 Hz). A new perspective was clearly necessary.

The published and above evidence, particularly the high-field absorption of most of the sp^2 carbons suggested that compound (A) was a pyrrole derivative, and a reasonable structure (8) that accommodates all the evidence is shown in Scheme 2 together with a rationale for its

[†]one-bond C-C coupling was not discernable since the carbon to which coupling could occur was superimposed by the labelled carbon absorption.



formation. Thus a 1,3-dipolar cycloaddition is followed by a tautomeric shift of an acidic

proton resulting in the pyrrole (7) which can cyclise to the pyrroloquinoxaline (8).

Further evidence in support of this structure derives from a comparison with the known $pyrrolo[1,2-a]quinoxaline (9)^4$. The close similarity of the respective u.v. spectra (Table 2)

and the ¹³C n.m.r. spectra (Table 3) together with the i.r. spectral resemblance gives weight the pyrroloquinoxaline structure (8). Attempts to decarboxylate the acid derived from (8) unfortunately caused tar formation, giving no (9).

Cpd.	λ_{max} nm (ϵ)						
(8)	250 (30060)	263inf(14931)	-	-	304sh(8250)	315(12180	329 (10020)
(9)	251 (10570)	261sh (8210)	280(2740)	293sh(3680)	303inf(5190)	315(8400)	329 (7080)

Table 2. U.V. spectra of the pyrrole [1,2-a] quinoxalines (8) and (9) in chloroform

	(8)	(9)
Carbon	ррш	ррш
1	123.81	115.81
2	123.18*	115.81
3	120,48	115.81
3а	115.07	115.81
5a,9a	126.28,123.81*	126.25, 124.68
6,9	116.98, 119.13	116.96, 118.75
7,8	130.39, 129.42	128.44, 127.88
N-Me	32.98	32.33
CO-N	156.72	154.98
2- <u>C</u> OOMe	169.76	-
3- <u>C</u> OOMe	165.22	-
COO <u>Me</u> 's	54.48, 56.48	-

Table 3. Assignment of 13 C n.m.r. absorptions to (8) and (9)

References

- 1. H. Ogura and K. Kikuchi, J. Org. Chem. 1972, <u>37</u>, 2679.
- <u>I.r.</u> (KBr) 1740, 1710 (COOMe), 1655cm⁻¹(CO); <u>u.v.</u> λ_{max}(EtOH) 243(log ε 4.23), 314(3.71), 328 nm (3.62); <u>n.m.r.</u> δ(CDCl₃) 3.64 (s, NMe) 3.91, 4.04 (s, COOMe's), 7.42(s) 7.50(m,Ar H's) 8.21(s) (this last resonance was described as a doublet by Ogura and Kikuchi); m.s. 314 (M⁺).
- 3. I. Zugravescu, J. Herdan and I. Druta, Rev. Roumaine de Chim., 1974, 19, 649.
- 4. G. W. H. Cheeseman and B. Tuck, <u>J. Chem. Soc</u>. (C), 1966, 852.